2013年6月25日 星期二

Card sized SBC

Console server, networking appliance,  Industrial PC

The initial goal in creating the Raspberry Pi credit card sized, Linux-based Single Board Computer (SBC) – targeted primarily at education – was to develop a response to the decline of students engaging with computer science and related engineering disciplines. Our desire was to reverse the trend of children becoming consumers rather than creators. The following case study follows the hardware development process from an early failure, initial prototypes, and through to the finished production design.
Over recent years there has been an increasing trend for children to be consumers of digital content rather than be future creators or engineers. This trend is driven by manufacturers looking to provide a seamless experience for target customers on a variety of electronic platforms, from gaming consoles to tablets and laptop computers. As a result, access to raw I/O has become restricted. Similarly, any packaged provision of a programming environment is an anathema to the products’ commercial goals. The knowledge required to create “hello world” or flash an external LED has become simply too vast and the opportunity to learn vital skills such as structuring/codifying ideas and debugging has been largely subsumed by a click-and-shoot world. Any motivation to get under the hood and see how these products work is largely dissipated by the impenetrable barriers presented by these “locked down” systems.

refer to :http://embedded-computing.com/articles/case-card-sized-sbc/

2013年6月19日 星期三

Bluetooth technologies accelerates its market

In-Vehicle Computer,  single board COMPUTER, Industrial PC


By leveraging Bluetooth, consumers can stream in-vehicle songs from their smartphones and play music on their speakers, allowing them to transform their smartphone into a in-vehicle stereo. The next wave of IVI applications will rely heavily on three wireless technologies – Bluetooth, Wi-Fi, and Near Field Communication– built on one combination radio chip. And as the market continues to evolve, OEMs will need in-vehicle to leverage traditional Wi-Fi rolling hot spots to offer vehicle-to-vehicle communications such as traffic management, incident avoidance, and social networking.


refer to: http://embedded-computing.com/articles/wireless-accelerate-next-wave-in-vehicle-innovation/